8-4: Solve Problems Using Angle Relationships

1. Sample answer: Intersecting lines form adjacent angles that share a ray. They also form vertical angles, which are formed by opposite rays and are equal in measure. They can form complementary angles, with measures that total 90°. They will form supplementary angles, with measures that total 180°.
2. No; Sample answer: Vertical angles are opposite each other and only share a vertex. Adjacent angles share a vertex and a ray.
3. No; As long as two angles total 90° they are considered complementary, whether they are next to each other or not. The same is true for two supplementary angles - they just need to total 180°.
4. Sample answer: $\angle 1$ and $\angle 2, \angle 4$ and $\angle 5$
5. $\angle 1$ and $\angle 3$
6. 10
7. $\angle x, \angle z$
8. $\angle \mathrm{KOL}$ and $\angle \mathrm{LOM}, \angle \mathrm{LOM}$ and $\angle \mathrm{MON}$
9. 8
10. 19
11. 16
12. 26
13. $m \angle A=135^{\circ}, m \angle B=45^{\circ}$
14. 415
15. $m \angle 1+50=180$

$$
50+m \angle 3=180
$$

$$
\text { So } m \angle 1=m \angle 3=130^{\circ}
$$

16. Martin subtracted 55° from 180° instead of from 90°. The correct measure is 35°.
17. 23
18. 60
