8-4: Find Volume of Spheres

1. Sample answer: The volume of a sphere is equal to two times the volume of a cone that has the same circular base and height.
2. Sample answer: Kristy found the surface area, not the volume of the sphere. She used the formula S.A. $=$ $4 \pi r^{2}$ instead of $V=\frac{4}{3} \pi r^{3}$.
3. Sample answer: The radius of the base of the cone-shaped block is the same as the radius of the sphere-shaped block. The volume of a cone is half the volume of a sphere with the same height (diameter) and radius.
4. About 113 cubic inches
5. The volume of the sphere is about 2,144 cubic centimeters.
6. $302 / 3 \pi \mathrm{in}^{3}$ or about $96.3 \mathrm{in}^{3}$; Sample answer: In cubic inches, the volume of the cylinder is $\pi r^{2} \mathrm{~h}$ or 30π, and the total volume of the hemisphere is $2 / 3 \pi r^{3}$ or $2 / 3 \pi$. Add the volumes.
7. 27.5

20,796.875
3.14; 20,796.875

87,070
8. a. $\frac{5,324}{3} \pi$ in. ${ }^{3}$
b. $\frac{2,662}{3} \pi$ in. ${ }^{3}$
c. 8.7 inches
9. About $1,590 \mathrm{~cm}$
10. About $14,130 \mathrm{~mm}^{3}$
11. About 7.6 cm
12. About $988 \mathrm{~m}^{3}$
13. About $20.57 \mathrm{~m}^{3}$; Sample answer: My friend calculated the volume using the diameter, not the radius.
14. About 1,507 in. ${ }^{3}$
15. a. About 1,611 in. 3
b. She did not subtract the volume of the small cylinder.
16. 4,187
17. 57

