1. Sample answer: A model can represent the sample space, and the sample space can be used to determine the probability of an event.
2. Sample answer: Each model shows the complete sample space of a compound event.
3. Sample answer: You can find the probability of both simple and compound events with the ratio of the number of favorable outcomes to the number of total possible outcomes.
4. $P($ Whitney, Prize 2$)=\frac{1}{9}$
5. a. $P(3$, heads $)=\frac{1}{8}$
b. $P($ odd number, heads $)=\frac{2}{8}$, or $\frac{1}{4}$
6. 2

4
$\frac{2}{4} ; 50$
7. 2

12
$\frac{2}{12} ; 16 \frac{2}{3}$
8. $P($ heads up and $(1,2$, or 4$))=\frac{3}{10}$
9. $P($ at least two heads $)=\frac{4}{8}$, or 50%
10. Sample answer: If less of either wheel is red, Gary's chance of winning decreases
11. P ((long or short) and (pink or blue)) $=\frac{4}{9}$
12. $P($ no $Y)=P(n o O)=\frac{20}{30}$;

Sample answer: The probability of choosing a password without any one of the 6 letters is equal because the number of favorable outcomes is the same in each case.
13. a. 36; Sample answer: Each time the cube is rolled there are 6 possibilities. Since the cube is rolled twice, whatever the first number is rolled has the possibility of being paired with 6 different numbers. I multiplied 6 and 6 to find the number of possible combinations.
b. $P($ sum of 10$)=\frac{3}{36}=\frac{1}{12}$

