7-2: Understand the Converse of the Pythagorean Theorem

1. Sample answer: If the lengths of the three sides of a triangle satisfy the equation $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.
2. No; Sample answer: Abe used $\mathrm{leg}^{2}+$ hypotenuse ${ }^{2}=$ leg 2 instead of $\mathrm{leg}^{2}+$ leg $^{2}=$ hypotenuse 2 when solving. Since $9+16=25$, Abe can make a right triangle.
3. Sample answer: The longest side length will always be substituted for c. The other two lengths can be either a or b. It does not matter which is which because of the Communication Property of Addition.
4. Yes; Sample answer: $6^{2}+8^{2}=10^{2}$.
5. No;

Sample answer: $(\sqrt{26})^{2}+(\sqrt{28})^{2} \neq 8^{2}$
6. No; Sample answer:
$15.5^{2}+14^{2} \neq 20.8^{2}$
7. $3 ; 4 ; 6$

9; 16; 36
$25 \neq 36$
No
8. 12; 16; 20

144; 256; 400
$400=400$
Yes
9. Yes; Sample answer:
$5^{2}+15^{2}=(\sqrt{250})^{2}$.
10. Yes; Sample answer:
$5^{2}+3.75^{2}=6.25^{2}$.
11. Yes; Sample answer: The side lengths satisfy $a^{2}+b^{2}=c^{2}$, so $159+$ $282=441$.
12. Triangles 1 and 3
13. Student 1 and Student 2; Sample answer: They used the equation a + $b=c$ instead of $a^{2}+b^{2}=c^{2}$.
14. No; Sample answer: Since $13^{2}+14^{2}$ $\neq(\sqrt{340})^{2}, \Delta K L M$ is not a right triangle. So $\overline{K M}$ is not perpendicular to $\overline{J L}$ and is not the height of $\Delta \mathrm{JKL}$.
15. a. Triangles 2 and 3
b. Sample answer: For Triangle 1, if the lengths of the legs are $\sqrt{229}$ units and $\sqrt{225}$ units, then the length of the hypotenuse would be $\sqrt{454}$ units.
16. $\triangle X Y Z$
$9^{2}+(\sqrt{63})^{2}=(\sqrt{144})^{2}$
17. B

