1. Sample answer: Two figures are similar if you can map one figure to the other by a sequence of transformations including dilations.
2. Sample answer: Corresponding angles are congruent and corresponding side lengths are related by the same ratio.
3. No; Sample answer: A given translation, reflection, or rotation followed by a given dilation does not always map a figure to the same image as the same dilation followed by the same translation, reflection, or rotation.
4. Yes; Sample answer: The figures have the same shape. Corresponding angles have the same angle measure, and corresponding sides have a ratio of $1 / 2$.
5. $A^{\prime}(-5,4), B^{\prime}(1,4), C^{\prime}(-3,6)$
6. No; Sample answer: There is no sequence of transformations, including a dilation, that maps $\triangle \mathrm{ABC}$ to $\triangle D E F$.
7. y-axis

3; 3
$1 / 3$
8. No; Sample answer: There is no series of transformations, including a dilation, that maps $\triangle \mathrm{MNO}$ to $\triangle \mathrm{PQO}$.
9. $\mathrm{X}(-4,-4), Y(-8,-4), Z(-6,-8)$
10. Sample answer: RSTU is mapped to VXYZ by a translation 6 units right and 4 units up, followed by a dilation with center $(0,0)$ and a scale factor of 0.5 .
11. Yes; Sample answer: Rotation 90° about the origin followed by a dilation with center at the origin and a scale factor of 2 maps $\triangle \mathrm{PQR}$ to $\triangle X Y Z$.
12. Sample answer: Coordinate 1: $(0,2)$: translation 4 units left and dilation with center point Z and a scale factor of 0.5 ; Coordinate 2: (-4,2); reflection across y-axis, and dilation with center point Z and a scale factor of 0.5 .
13. B
14. Similar

Not Similar
Not Similar

