1. Sample answer: A sequence of translations, reflections, and rotations maps one figure onto another without changing its shape or size.
2. No; Sample answer: The sequence of transformations just needs to include one or more of these transformations.
3. Yes; Sample answer: If you use only rotations and translations, the orientation will be maintained. Only a reflection would change the orientation.
4. $25 \mathrm{~cm}^{2}$; Sample answer: The resulting image will have the same area because rotations and reflections do not change the size or shape of a figure.
5. Yes; Sample answer: You can map $\triangle A B C$ only $\triangle D E F$ by reflecting $\triangle A B C$ across the line $x=5$ and then translating 5 units up.
6. No; Sample answer: You cannot map $\triangle A B C$ onto $\Delta G H$ by a sequence of translations, reflections, and rotations.
7. are
8. Yes; Sample answer: A 180° rotation about point F followed by a translation 4 units down and 1 unit left maps \triangle DEF onto $\triangle D^{\prime} E^{\prime} F^{\prime}$. So the triangles are congruent.
9. Sample answer: Reflecting quadrilateral ABCD across the y-axis and then translating it 5 units down will show that the quadrilaterals are the same size and shape, so therefore congruent.
10. Yes; Sample answer: A reflection across the y-axis followed by a translation 6 units down and 3 units right shows that the triangles have the same size and shape.
11. \triangle QRS and \triangle DFE; Reflect \triangle DFE across the x-axis. Rotate it 90° counterclockwise around point E. Translate it 5 units down.
12. No; Sample answer: There is no sequence of transformations that maps $\triangle \mathrm{LMN}$ directly onto $\triangle \mathrm{XYZ}$.
13. Sample answer: She found a sequence of transformations that maps $\triangle D^{\prime} E^{\prime} F^{\prime}$ onto $\triangle D E F$, not $\triangle D E F$ onto $\triangle D^{\prime} E^{\prime} F^{\prime}$. The translation should have been 6 units left.
14. a. B
b. Yes; Sample answer: A rotation of 180° about the origin followed by a translation 3 units right and 4 units up maps $\triangle D E F$ onto $\triangle D^{\prime} E^{\prime} F^{\prime}$.
