1. No matter how many steps an equation has, you can use the inverse relationship between operations and the properties of equalities to isolate the variable and solve the equation.
2. Sample answer: First, add 13 and 3 to show that $4 x$ is equal to 16 . Then divide 16 into 4 parts to show that x $=4$.
3. I can substitute 14 for p and check that the equation is true.
4. a. $2+c=2\left(1 \frac{1}{3}\right)$
b. $\mathrm{c}=\frac{2}{3}$
5. a. $4 n+3=47$
b. 11
6. $x=7$
7. $2 ; 2$

15
5; $15 \cdot 5$
75
8. Sample answer: $3 x-5=7$ or
$7+5=3 x$
$x=4$
9. $3 x-38=10$; Daniel spent $\$ 16$.
10. $p=4.5$
11. $n=30$
12. a. $4 m+6.25=44.25$

The cost of one movie ticket is $\$ 9.50$
b. Answers will vary.
13. a. $x=3$
b. Sample answer: He might have added the 4 to the right side but should have subtracted 4.
14. a. The Addition Property of Equality and the Division Property of Equality.
b. 6
15. a. $\frac{1}{3} \mathrm{x}-11=5$

There were 48 people at the party.
b. Sample answer: $\frac{1}{3} x=16$
16. $\$ 57.45$
17. First, I used the Subtraction Property of Equality to subtract $4 \frac{1}{5}$ from both sides, which gave me $2 x=4 \frac{4}{5}$. To isolate x, I used the Division Property of Equality to divide both sides by 2 . So $x=2 \frac{2}{5}$.

