1. Sample answer: The expression can be factored using the Distributive Property and the greatest common factor.
2. a. Sample answer: Susan didn't use any negative numbers so the expression won't expand to $-15 b$. She also subtracted 3 from 6 instead of dividing by 3 to get 2 .
b. $3(4 a-5 b+2)$
3. a. $36 x+12 y+24$
b. $12(3 x+y+2)$; He can make 12 identical kits.
c. 3 packs of $x$ number of pencils, 1 pack of $y$ number of crayons, and 2 erasers
4. Sample answer: $-12 x+24-18 y=$ $6(-2 x+4-3 y)=-6(2 x-4+3 y)$
5. Sample answer: The GCF of 6 and 15 is 3 . Using the Distributive
Property, $3 \cdot 2 x=6 x$ and $3 \cdot 5=15$. So, $6 x+15=3(2 x+5)$
6. $8 \mathrm{a} ; 5$
$2(8 a+5)$
7. $-3 y ;-1$
$3(-3 y-1)$
8. $7(2 x+7)$
9. $4(3 y-4)$
10. Sample answers: $5 x+10$ and $5(x+2)$
11. $6(3 x+4 y)$
12. $240-400 x=80(3-5 x)$

So, the possible dimensions are a width of 80 yards and length of (3-5x) yards.
13. a. $5 x(3-4 y)$
b. My friend didn't completely factor the second term.
14. a. Identify the greatest common factor.
b. $2(6 x+9 y+13)$
15. Sample answers:
$6 x+6$ $6(x+1)$
16. a. $-\frac{3}{4} m+8 m+m$
$5.75 t+7.75 t-t$
$8 x y-6 x y$
b. The terms within each expression do not have the same variables.
17. Yes; Sample answer: 3 and 5 do not have a common factor so the expression can not be factored.
18. A, C
19. $-2(x+5)$ or $2(-x-5)$

