Lesson 2-3: Understand Proportional Relationships - Equivalent Ratios

1. All related pairs of proportional quantities x and y have the same relationship. So, you can write equivalent ratios for all related pairs of x and y.
2. The rations $\frac{y}{x}$ for all pairs of x and y will not be equivalent.
3. It means that x and y have a proportional relationship.
4. $\frac{5}{2}=\frac{7.5}{3}=\frac{12.5}{5}=2.5$, but $\frac{18}{8}=2.25$, so x and y do not have a proportional relationship.
5. Yes; the quantities are proportional because the ratios $\frac{3}{1}, \frac{6}{2}$, and $\frac{9}{3}$ are equivalent.
6. Yes; 640 tickets.
7. $\frac{25}{1} ; \frac{25}{1}$
8. No; the ratios of Calories to slices of salami are not all equivalent.
9. Yes; the ratios of cost to dozens of eggs for all related pairs are equivalent.
10. No; the quantities x and y do not have a proportional relationship, so you cannot find the value of y when x is 11 .
11. Yes; $y=3 \frac{1}{3}$
12. a. $\frac{135 \text { feet }}{9 \text { floors }} ; \frac{15 \text { feet }}{1 \text { floor }}$; Each floor of the building is 15 feet high.
13. Yes; Sample answer: All the ratios of y to x are equivalent. Every ratio $\frac{y}{x}$ is equivalent to $\frac{9}{4}$.
14. a. Yes; the ratios of towers to customers are all equivalent.
b. $\frac{5,250}{252}=\frac{y}{576} ; y=12,000$ customers
15. A, D, E
